Lịch sử Quang_học

Bài chi tiết: Lịch sử quang học
Thấu kính Nimrud.

Quang học bắt đầu với sự phát triển thấu kính của người Ai Cập cổ đạiLưỡng Hà. Thấu kính sớm nhất được biết tới, làm từ các tinh thể được mài bóng, thường là thạch anh, có niên đại vào khoảng năm 700 trước Công nguyên ở Assyria như thấu kính Layard/Nimrud.[2] Người La MãHy Lạp cổ đại đã đổ đầy các quả cầu kính bằng nước để tạo ra thấu kính. Những cách làm này sau đó được các nhà triết học Hy Lạp và Ấn Độ phát triển thành lý thuyết ánh sáng và sự nhìn, cũng như người La Mã phát triển lý thuyết quang hình học. Từ optics xuất phát từ tiếng Hy Lạp cổ đại ὀπτική, có nghĩa là "biểu hiện, nhìn nhận".[3]

Triết học Hy Lạp chia quang học ra thành hai lý thuyết đối lập dựa trên cách miêu tả làm sao mắt con người nhìn được, "lý thuyết mắt phát ra tia sáng" và "lý thuyết mắt thu nhận tia sáng".[4] Lý thuyết mắt thu nhận tia sáng cho rằng con người nhìn thấy sự vật là do các vật phát ra những bản sao giống y hệt chúng (gọi là eidola) mà mắt người thu nhận được. Với sủng hộ của nhiều triết gia như Democritus, Epicurus, Aristotle và các môn đệ, lý thuyết này dường như đã có nét giống với lý thuyết hiện đại về thị giác, nhưng nó vẫn chỉ là các tiên đoán mà thiếu đi các thí nghiệm kiểm tra.

Plato là người đầu tiên nêu ra lý thuyết mắt người phát ra các tia sáng, lý thuyết cho rằng cảm nhận thị lực là do các tia sáng phát ra từ mắt người chiếu vào vật thể. Ông cũng bình luận về tính chẵn lẻ thông qua đối xứng gương khi miêu tả vấn đề ở trong cuốn Timaeus.[5] Vài trăm năm sau, Euclid viết cuốn sách Quang học khi ông bắt đầu liên hệ sự nhìn với môn hình học, tạo ra những cơ sở đầu tiên cho ngành quang hình học.[6] Cuốn sách của ông được viết dựa trên cơ sở của lý thuyết phát tia của Plato và Euclid còn miêu tả các quy tắc toán học của phép phối cảnh cũng như hiệu ứng khúc xạ một cách định tính, mặc dù vậy ông đặt ra nghi vấn rằng chùm tia sáng từ mắt người liệu có thể ngay lập tức làm sáng lên các vì sao chỉ trong nháy mắt.[7] Ptolemy, trong cuốn Quang học của ông đã miêu tả một lý thuyết kết hợp cả hai lý thuyết trên: các tia sáng từ mắt tạo thành một hình nón, với đỉnh nằm trong mắt, và đáy nón xác định lên trường nhìn. Các tia sáng rất nhạy với mọi vật, và chúng mang thông tin chứa hướng và khoảng cách các vật trở lại não của người quan sát. Ông tổng kết lại các kết quả của Euclid và đi đến miêu tả cách đo góc khúc xạ, mặc dù ông đã không nhận ra mối liên hệ giữa góc này với góc tới của tia sáng.[8]

Reproduction of a page of Ibn Sahl's manuscript showing his knowledge of the law of refraction, now known as Snell's law

Trong thời Trung Cổ, các ý tưởng của người Hy Lạp đã được phục hồi và mở rộng trong các văn tự của thế giới Hồi giáo. Một trong những văn tự sớm nhất là của Al-Kindi (khoảng 801–73) viết về các giá trị của những ý tưởng của trường phái Aristote và Euclid về quang học, ủng hộ cho lý thuyết mắt phát tia sáng do có thể dùng nó để miêu tả định lượng các hiện tượng quang học.[9] Năm 984, nhà toán học Ba Tư Ibn Sahl viết luận thuyết "Về cách nung chảy tạo gương và thấu kính", ông đã miêu tả đúng định luật về sự khúc xạ mà có nét tương đương với định luật Snell.[10] Ông sử dụng định luật này nhằm tính toán hình dạng tối ưu cho thấu kính và các gương cầu lõm. Ở đầu thế kỷ 11, Alhazen (Ibn al-Haytham) viết cuốn Sách quang học (Kitab al-manazir) trong đó ông giải thích sự phản xạ và khúc xạ và đề xuất một hệ thống mới giải thích cho khả năng nhìn sự vật và ánh sáng dựa trên các quan sát và thực nghiệm.[11][12][13][14][15] Ông phê phán "lý thuyết phát tia sáng" của trường phái Ptolemy về mắt người phát ra tia nhìn, mà thay vào đó ông có ý tưởng về ánh sáng phản xạ theo đường thẳng ở mọi hướng từ mọi điểm của vật thể được quan sát và sau đó các tia sáng đi vào mắt, mặc dù ông không thể giải thích đúng đắn làm thế nào để mắt thu nhận được các tia sáng.[16] Công trình của Alhazen phần lớn bị lãng quên trong thế giới Ả Rập nhưng nó đã được một học giả vô danh biên dịch sang tiếng La tinh vào khoảng năm 1200 và sau này nó được thầy tu người Ba Lan Witelo tổng kết và mở rộng[17] đưa nó trở thành một cuốn sách mẫu mực về quang học ở châu Âu trong gần 400 năm tiếp theo.

Ở thế kỷ 13 giám mục người Anh Robert Grosseteste viết một tác phẩm về ánh sáng trên nhiều chủ đề khoa học dưới bốn quan điểm khác nhau: nhận thức luận về ánh sáng, lý luận siêu hình học về ánh sáng, thuyết nguyên nhân hoặc tính chất vật lý của ánh sáng, lý luận thần học về ánh sáng,[18] dựa trên các công trình của các trường phái Aristotle và Plato. Môn đệ nổi tiếng nhất của Grosseteste, Roger Bacon, đã viết những công trình với nguồn trích dẫn phong phú dựa trên các bản dịch thời đó về các nghiên cứu quang học và triết học, bao gồm của Alhazen, Aristotle, Avicenna, Averroes, Euclid, al-Kindi, Ptolemy, Tideus, và Constantine the African. Bacon đã dùng các phần của một khối cầu thủy tinh để làm kính lúp để chứng tỏ ánh sáng phản xạ từ vật thể hơn là phát ra từ chúng.

Kính mắt đầu tiên được phát minh vào khoảng năm 1286 ở Italia.[19] Điều này dẫn tới sự ra đời của ngành công nghiệp quang học với mục đích mài cắt và đánh bóngthấu kính để làm các kính mắt, lúc đầu là ở Venice và Florence vào thế kỷ 13,[20] và sau đó với các trung tâm chế tạo kính quang học ở Hà LanĐức.[21] Những nhà chế tạo kính mắt đã cải tiến các loại thấu kính để hiệu chỉnh hình ảnh dựa trên các kinh nghiệm thực tiễn thu được từ các quan sát về hiệu ứng của các thấu kính hơn là từ các lý thuyết quang học thô sơ ngày đó (các lý thuyết hồi đó còn chưa giải thích được kính mắt hoạt động như thế nào).[22][23] Những phát triển thực tiễn, làm chủ và thí nghiệm với các thấu kính dẫn tới phát minh trực tiếp ra kính hiển vi quang học vào khoảng 1595, và kính thiên văn phản xạ năm 1608, cả hai đều được làm ở các trung tâm sản xuất kính quang học ở Hà Lan.[24][25]

Đầu thế kỷ 17 Johannes Kepler nghiên cứu mở rộng lĩnh vực quang hình học, bao gồm thấu kính, sự phản xạ từ gương phẳng và gương cầu, nguyên lý chụp ảnh qua lỗ hổng, định luật tỷ lệ nghịch đảo bình phương của cường độ ánh sáng, và cách giải thích quang học cho các hiện tượng thiên văn như nguyệt thựcnhật thựcthị sai. Ông cũng suy luận đúng về vai trò của võng mạc như là một cơ quan ghi nhận hình ảnh, và Kepler có thể đánh giá định lượng một cách khoa học các hiệu ứng mà các nhà quang học quan sát từ hơn 300 năm là do từ các loại thấu kính khác nhau.[26] Sau khi kính thiên văn được phát minh ra, Kepler đã thiết lập cơ sở lý thuyết miêu tả sự hoạt động của chúng và cách để nâng cao khả năng phóng đại của kính thiên văn, mà ngày nay gọi là kính thiên văn Kepler, với hai thấu kính lồi tạo ra sự phóng đại ảnh lớn hơn so với kính thiên văn trước đó.[27]

Bìa của lần xuất bản đầu tiên của cuốn sách của Newton Opticks

Lý thuyết về quang học tiến triển trong giữa thế kỷ 17 với công trình của nhà bác học René Descartes, ông giải thích nhiều hiện tượng quang học khác nhau như phản xạ và khúc xạ bằng giả sử ánh sáng được phát ra từ vật tạo ra nó.[28] Điều này khác cơ bản so với quan điểm lý thuyết phát xạ của người Hy Lạp cổ đại. Cuối thập kỷ 1660 và 1670, Newton đã mở rộng ý tưởng của Descartes thành lý thuyết hạt ánh sáng, và ông nổi tiếng với công trình xác định được ánh sáng trắng là tập hợp của các tia sáng đơn sắc mà có thể tách được nhờ một lăng kính. Năm 1690, Christiaan Huygens nêu ra lý thuyết sóng ánh sáng dựa trên đề xuất do Robert Hooke nêu ra vào năm 1664. Chính Hooke đã phê bình lý thuyết của Newton về hạt ánh sáng và sự phản đối giữa hai người kéo dài cho tới tận khi Hooke qua đời. Năm 1704, Newton xuất bản cuốn Opticks và ở thời điểm đó nó đã khá thành công cũng một phần nhờ sự nổi tiếng của Newton trong lĩnh vực vật lý học. Cuộc tranh luận giữa hai người về bản chất của ánh sáng dường như có phần thắng thuộc về Newton thời đó.[28]

Quang học Newton được chấp nhận rộng rãi cho tới đầu thế kỷ 19 khi Thomas YoungAugustin-Jean Fresnel thực hiện các thí nghiệm chứng tỏ sự giao thoa của ánh sáng cho thấy bản chất sóng của ánh sáng. Thí nghiệm nổi tiếng của Young chỉ ra ánh sáng tuân theo nguyên lý chồng chập, một tính chất của các dạng sóng mà lý thuyết hạt ánh sáng của Newton không giải thích được. Thí nghiệm này dẫn tới sự ra đời của kỹ thuật nhiễu xạ ánh sáng và mở ra một lĩnh vực mới trong quang học vật lý.[29] Quang học sóng đã được thống nhất thành công với lý thuyết điện từ bởi James Clerk Maxwell trong thập kỷ 1860.[30]

Dấu mốc phát triển tiếp theo của quang học là vào năm 1899 khi Max Planck miêu tả đúng mô hình bức xạ vật đen khi giả sử sự trao đổi năng lượng giữa ánh sáng và vật chất chỉ xảy ra dưới những gói rời rạc mà ông gọi là quanta - lượng tử].[31] Năm 1905 Albert Einstein công bố lý thuyết giải thích hiệu ứng quang điện củng cố thêm cho tính chất lượng tử của ánh sáng.[32][33] Năm 1913 Niels Bohr chỉ ra rằng các nguyên tử chỉ có thể phát ra lượng năng lượng rời rạc, do vậy ông giải thích được những vạch rời rạc trong quang phổ phát xạquang phổ hấp thụ.[34] Hiểu biết về tương tác giữa ánh sáng và vật chất đi theo sự phát triển mới này không những là cơ sở cho ngành quang học lượng tử mà còn có vai trò quan trọng trong sự phát triển của cơ học lượng tử. Lý thuyết điện động lực học lượng tử giải thích mọi hiện tượng và quá trình quang học nói chung là kết quả của sự trao đổi các photon ảo và photon thực.[35]

Quang học lượng tử có được ứng dụng thực tiễn quang trọng kể từ khi phát minh ra maser vào năm 1953 và laser vào năm 1960.[36] Phát triển từ công trình của Paul Dirac về lý thuyết trường lượng tử, George Sudarshan, Roy J. Glauber, và Leonard Mandel đã áp dụng lý thuyết lượng tử cho trường điện từ vào các thập niên 1950 và 1960 và thu được sự hiểu biết sâu sắc hơn về sự tách sóng quang và đặc tính thống kê của ánh sáng.

Tài liệu tham khảo

WikiPedia: Quang_học http://www.denso-wave.com/en/adcd/fundamental/barc... http://www.epic-assoc.com http://books.google.com/?id=3OgDAAAAMAAJ&pg=PP151 http://books.google.com/?id=71zxDuunAvMC&pg=PA136 http://books.google.com/?id=7LaRPNINH_YC&pg=PT112 http://books.google.com/?id=luNIAAAAIAAJ&pg=PA214 http://books.google.com/?id=oA-eBHsapX8C&pg=PA318 http://books.google.com/?id=opYAAAAAMAAJ&pg=RA1-PA... http://books.google.com/?id=ow5xs_Rtt9AC&printsec=... http://books.google.com/?id=yb8otde21fcC&pg=RA1-PA...